Copied to
clipboard

G = C42:4D9order 288 = 25·32

3rd semidirect product of C42 and D9 acting via D9/C9=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: D36:1C4, C42:4D9, C4.17D36, C36.33D4, Dic18:1C4, C12.52D12, C9:1C4wrC2, (C4xC36):6C2, C4.6(C4xD9), C12.54(C4xS3), C36.16(C2xC4), (C4xC12).11S3, C6.8(D6:C4), (C2xC4).71D18, (C2xC18).27D4, C4.Dic9:1C2, C2.3(D18:C4), C3.(C42:4S3), (C2xC12).391D6, D36:5C2.1C2, C18.1(C22:C4), (C2xC36).94C22, C22.7(C9:D4), (C2xC6).65(C3:D4), SmallGroup(288,12)

Series: Derived Chief Lower central Upper central

C1C36 — C42:4D9
C1C3C9C18C2xC18C2xC36D36:5C2 — C42:4D9
C9C18C36 — C42:4D9
C1C4C2xC4C42

Generators and relations for C42:4D9
 G = < a,b,c,d | a4=b4=c9=d2=1, dad=ab=ba, ac=ca, bc=cb, dbd=b-1, dcd=c-1 >

Subgroups: 292 in 66 conjugacy classes, 26 normal (all characteristic)
C1, C2, C2, C3, C4, C4, C22, C22, S3, C6, C6, C8, C2xC4, C2xC4, D4, Q8, C9, Dic3, C12, C12, D6, C2xC6, C42, M4(2), C4oD4, D9, C18, C18, C3:C8, Dic6, C4xS3, D12, C3:D4, C2xC12, C2xC12, C4wrC2, Dic9, C36, C36, D18, C2xC18, C4.Dic3, C4xC12, C4oD12, C9:C8, Dic18, C4xD9, D36, C9:D4, C2xC36, C2xC36, C42:4S3, C4.Dic9, C4xC36, D36:5C2, C42:4D9
Quotients: C1, C2, C4, C22, S3, C2xC4, D4, D6, C22:C4, D9, C4xS3, D12, C3:D4, C4wrC2, D18, D6:C4, C4xD9, D36, C9:D4, C42:4S3, D18:C4, C42:4D9

Smallest permutation representation of C42:4D9
On 72 points
Generators in S72
(37 64 46 55)(38 65 47 56)(39 66 48 57)(40 67 49 58)(41 68 50 59)(42 69 51 60)(43 70 52 61)(44 71 53 62)(45 72 54 63)
(1 32 14 23)(2 33 15 24)(3 34 16 25)(4 35 17 26)(5 36 18 27)(6 28 10 19)(7 29 11 20)(8 30 12 21)(9 31 13 22)(37 55 46 64)(38 56 47 65)(39 57 48 66)(40 58 49 67)(41 59 50 68)(42 60 51 69)(43 61 52 70)(44 62 53 71)(45 63 54 72)
(1 2 3 4 5 6 7 8 9)(10 11 12 13 14 15 16 17 18)(19 20 21 22 23 24 25 26 27)(28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45)(46 47 48 49 50 51 52 53 54)(55 56 57 58 59 60 61 62 63)(64 65 66 67 68 69 70 71 72)
(1 39)(2 38)(3 37)(4 45)(5 44)(6 43)(7 42)(8 41)(9 40)(10 52)(11 51)(12 50)(13 49)(14 48)(15 47)(16 46)(17 54)(18 53)(19 61)(20 60)(21 59)(22 58)(23 57)(24 56)(25 55)(26 63)(27 62)(28 70)(29 69)(30 68)(31 67)(32 66)(33 65)(34 64)(35 72)(36 71)

G:=sub<Sym(72)| (37,64,46,55)(38,65,47,56)(39,66,48,57)(40,67,49,58)(41,68,50,59)(42,69,51,60)(43,70,52,61)(44,71,53,62)(45,72,54,63), (1,32,14,23)(2,33,15,24)(3,34,16,25)(4,35,17,26)(5,36,18,27)(6,28,10,19)(7,29,11,20)(8,30,12,21)(9,31,13,22)(37,55,46,64)(38,56,47,65)(39,57,48,66)(40,58,49,67)(41,59,50,68)(42,60,51,69)(43,61,52,70)(44,62,53,71)(45,63,54,72), (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54)(55,56,57,58,59,60,61,62,63)(64,65,66,67,68,69,70,71,72), (1,39)(2,38)(3,37)(4,45)(5,44)(6,43)(7,42)(8,41)(9,40)(10,52)(11,51)(12,50)(13,49)(14,48)(15,47)(16,46)(17,54)(18,53)(19,61)(20,60)(21,59)(22,58)(23,57)(24,56)(25,55)(26,63)(27,62)(28,70)(29,69)(30,68)(31,67)(32,66)(33,65)(34,64)(35,72)(36,71)>;

G:=Group( (37,64,46,55)(38,65,47,56)(39,66,48,57)(40,67,49,58)(41,68,50,59)(42,69,51,60)(43,70,52,61)(44,71,53,62)(45,72,54,63), (1,32,14,23)(2,33,15,24)(3,34,16,25)(4,35,17,26)(5,36,18,27)(6,28,10,19)(7,29,11,20)(8,30,12,21)(9,31,13,22)(37,55,46,64)(38,56,47,65)(39,57,48,66)(40,58,49,67)(41,59,50,68)(42,60,51,69)(43,61,52,70)(44,62,53,71)(45,63,54,72), (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54)(55,56,57,58,59,60,61,62,63)(64,65,66,67,68,69,70,71,72), (1,39)(2,38)(3,37)(4,45)(5,44)(6,43)(7,42)(8,41)(9,40)(10,52)(11,51)(12,50)(13,49)(14,48)(15,47)(16,46)(17,54)(18,53)(19,61)(20,60)(21,59)(22,58)(23,57)(24,56)(25,55)(26,63)(27,62)(28,70)(29,69)(30,68)(31,67)(32,66)(33,65)(34,64)(35,72)(36,71) );

G=PermutationGroup([[(37,64,46,55),(38,65,47,56),(39,66,48,57),(40,67,49,58),(41,68,50,59),(42,69,51,60),(43,70,52,61),(44,71,53,62),(45,72,54,63)], [(1,32,14,23),(2,33,15,24),(3,34,16,25),(4,35,17,26),(5,36,18,27),(6,28,10,19),(7,29,11,20),(8,30,12,21),(9,31,13,22),(37,55,46,64),(38,56,47,65),(39,57,48,66),(40,58,49,67),(41,59,50,68),(42,60,51,69),(43,61,52,70),(44,62,53,71),(45,63,54,72)], [(1,2,3,4,5,6,7,8,9),(10,11,12,13,14,15,16,17,18),(19,20,21,22,23,24,25,26,27),(28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45),(46,47,48,49,50,51,52,53,54),(55,56,57,58,59,60,61,62,63),(64,65,66,67,68,69,70,71,72)], [(1,39),(2,38),(3,37),(4,45),(5,44),(6,43),(7,42),(8,41),(9,40),(10,52),(11,51),(12,50),(13,49),(14,48),(15,47),(16,46),(17,54),(18,53),(19,61),(20,60),(21,59),(22,58),(23,57),(24,56),(25,55),(26,63),(27,62),(28,70),(29,69),(30,68),(31,67),(32,66),(33,65),(34,64),(35,72),(36,71)]])

78 conjugacy classes

class 1 2A2B2C 3 4A4B4C···4G4H6A6B6C8A8B9A9B9C12A···12L18A···18I36A···36AJ
order12223444···446668899912···1218···1836···36
size112362112···23622236362222···22···22···2

78 irreducible representations

dim111111222222222222222
type++++++++++++
imageC1C2C2C2C4C4S3D4D4D6D9C4xS3D12C3:D4C4wrC2D18C4xD9D36C9:D4C42:4S3C42:4D9
kernelC42:4D9C4.Dic9C4xC36D36:5C2Dic18D36C4xC12C36C2xC18C2xC12C42C12C12C2xC6C9C2xC4C4C4C22C3C1
# reps1111221111322243666824

Matrix representation of C42:4D9 in GL2(F37) generated by

2825
22
,
923
2728
,
251
621
,
257
612
G:=sub<GL(2,GF(37))| [28,2,25,2],[9,27,23,28],[25,6,1,21],[25,6,7,12] >;

C42:4D9 in GAP, Magma, Sage, TeX

C_4^2\rtimes_4D_9
% in TeX

G:=Group("C4^2:4D9");
// GroupNames label

G:=SmallGroup(288,12);
// by ID

G=gap.SmallGroup(288,12);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-3,-3,141,36,422,675,80,6725,292,9414]);
// Polycyclic

G:=Group<a,b,c,d|a^4=b^4=c^9=d^2=1,d*a*d=a*b=b*a,a*c=c*a,b*c=c*b,d*b*d=b^-1,d*c*d=c^-1>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<